On Anonymization of Multi-graphs

نویسندگان

  • Chun Li
  • Charu C. Aggarwal
  • Jianyong Wang
چکیده

The problem of privacy-preserving data mining has attracted considerable attention in recent years because of increasing concerns about the privacy of the underlying data. In recent years, an important data domain which has emerged is that of graphs and structured data. Many data sets such as XML data, transportation networks, traffic in IP networks, social networks and hierarchically structured data are naturally represented as graphs. Existing work on graph privacy has focussed on the problem of anonymizing nodes or edges of a single graph, in which the identity is assumed to be associated with individual nodes. In this paper, we examine the more complex case, where we have a collection of graphs, and the identity is associated with individual graphs rather than nodes or edges. In such cases, the problem of identity anonymization is extremely difficult, since we need to not only anonymize the labels on the nodes, but also the underlying global structural information. In such cases, both the global and local structural information can be a challenge to the anonymization process, since any combination of such information can be used in order to de-identify the underlying graphs. In order to achieve this goal, we will create synthesized representations of the underlying graphs based on aggregate structural analytics of the collection of graphs. The synthesized graphs retain the properties of the original data while satisfying the k-anonymity requirement. Our experimental results show that the synthesized graphs maintain a high level of structural information and compatible classification accuracies with the original data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the k-Anonymization of Time-Varying and Multi-Layer Social Graphs

The popularity of online social media platforms provides an unprecedented opportunity to study real-world complex networks of interactions. However, releasing this data to researchers and the public comes at the cost of potentially exposing private and sensitive user information. It has been shown that a naive anonymization of a network by removing the identity of the nodes is not sufficient to...

متن کامل

Social Network De-Anonymization and Privacy Inference with Knowledge Graph Model

Social network data is widely shared, transferred and published for research purposes and business interests, but it has raised much concern on users’ privacy. Even though users’ identity information is always removed, attackers can still de-anonymize users with the help of auxiliary information. To protect against de-anonymization attack, various privacy protection techniques for social networ...

متن کامل

Comparing Random-Based and k-Anonymity-Based Algorithms for Graph Anonymization

Recently, several anonymization algorithms have appeared for privacy preservation on graphs. Some of them are based on randomization techniques and on k-anonymity concepts. We can use both of them to obtain an anonymized graph with a given k-anonymity value. In this paper we compare algorithms based on both techniques in order to obtain an anonymized graph with a desired k-anonymity value. We w...

متن کامل

Typicality Matching for Pairs of Correlated Graphs

In this paper, the problem of matching pairs of correlated random graphs with multi-valued edge attributes is considered. Graph matching problems of this nature arise in several settings of practical interest including social network deanonymization, study of biological data, web graphs, etc. An achievable region for successful matching is derived by analyzing a new matching algorithm that we r...

متن کامل

EWNI: Efficient Anonymization of Vulnerable Individuals in Social Networks

Social networks, patient networks, and email networks are all examples of graphs that can be studied to learn about information diffusion, community structure and different system processes; however, they are also all examples of graphs containing potentially sensitive information. While several anonymization techniques have been proposed for social network data publishing, they all apply the a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011